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Drosophila suzukii, spotted-wing drosophila, is a major pest of berries and cherries worldwide that attacks 
fruits at the ripening stage shortly before harvest. Recently, a mixture of octanoic acid and decanoic acid was 
developed as a 2-component oviposition deterrent (2c) as an alternative to spatial repellents for the behav-
ioral control of spotted-wing drosophila infestation. In this study, we evaluated the efficacy of the oviposition 
deterrent as a “push” component in a spotted-wing drosophila push–pull, in combination with a previously 
identified 4-component spotted-wing drosophila attractant (4c) as the “pull”, and compared the effect of push 
(2c), pull (4c), push–pull (2c + 4c), and control on spotted-wing drosophila oviposition in the laboratory and 
field. In both laboratory choice and no-choice bioassays using raspberry agar as an oviposition substrate, 
the pull treatment alone (4c) did not result in oviposition reduction. In contrast, both 2c and 2c + 4c resulted 
in a similar level of reduction in spotted-wing drosophila oviposition compared to control, indicating limited 
efficacy of the 4c as a pull as tested in this study. Similar results were also observed in the field, where fewer 
spotted-wing drosophila pupae emerged from raspberries from the 2c or 2c + 4c treated raspberries compared 
to untreated control, for both ripening field raspberries and store-bought sentinel raspberries. No significant 
difference in spotted-wing drosophila infestation was observed between control and 4c treatment. Our results 
suggest that an oviposition deterrent has a potential use as a push component in spotted-wing drosophila 
push–pull.
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Introduction

Drosophila suzukii, spotted-wing drosophila (SWD), is an invasive 
pest from Asia (Matsumura in 1931). Using its serrated ovipositor, 
it attacks healthy ripening stages of soft-skinned fruits, such as rasp-
berry, blueberry, cherry, strawberry, apricot, plum, fig, or grape (Lee 
et al. 2011, Cini et al. 2012, Poyet et al. 2015, Kenis et al. 2016). 
Since it was first recorded in North America and Europe in 2008, 
it has invaded South America in 2013 and Africa in 2020 (Hauser 
2011, Asplen et al. 2015, Tait et al. 2018, Boughdad et al. 2021, 
Kwadha et al. 2021), becoming a major pest of berries and cherries 

worldwide (Goodhue et al. 2011). Calendar-based application of 
insecticides such as spinosyns, pyrethroids, organophosphates, and 
diamides has been the major approach to manage SWD (Beers et 
al. 2011, Van Timmeren and Isaacs 2013, Diepenbrock et al. 2016). 
However, insecticide resistance has been reported in field populations 
of SWD in commercial berry production areas (Van Timmeren et al. 
2018, Gress and Zalom 2019, Ganjisaffar et al. 2022, Deans and 
Hutchison 2022). Thus, there is a critical need to develop alternative 
management strategies for SWD (Cha et al. 2012, Wallingford et al. 
2016, Cloonan et al. 2018, Tait et al. 2021).
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Push–pull management is a behavioral manipulative manage-
ment approach, which combines both antagonistic and agonistic 
stimuli to protect fruit by “pushing” target insects away from host 
fruit using a repellent, while “pulling” target pest away from the host 
using an attractant (Pyke et al. 1987). Agonistic sources such as at-
tractive trap plant, pheromone, kairomone, or visual cues have been 
selected as a “pull” component, while antagonistic sources such as 
repellent plants, repellent volatiles, or antifeedants have been used as 
a “push” component (Prokopy 1968, Miller and Cowles 1990, Khan 
et al. 2000, Duraimurugan and Regupathy 2005). The majority of 
the repellent plants or volatiles so far tested act based on spatial 
repellency that induces an oriented movement of a target pest away 
from an area or a source that needs to be protected from the target 
pest (Deletre et al. 2016, Parker et al. 2016, Renkema et al. 2016). 
Thus, to be effective, maintaining the concentration of these vola-
tile repellents at an effective concentration in the field is important 
(Renkema et al. 2017, Wallingford et al. 2018, Reher et al. 2019), 
although this has been often logistically challenging due to unpre-
dictable local stochastic factors such as wind, temperature, pressure, 
and canopy structure (Reher et al. 2019). Moreover, when the repel-
lent is highly volatile and requires a relatively high release rate to be 
effective, maintaining ambient concentration of the repellent at an 
effective level in the field has been shown especially challenging (eg 
Wallingford et al. 2018, Cha et al. 2021, Shrestha et al. 2024). This 
suggests that an oviposition deterrent that is not as highly volatile 
and more contact-based than spatially mediated repellents may be a 
useful alternative to overcome the disadvantage of using highly vol-
atile spatial repellents as a push component.

As a first proof-of-concept study of this hypothesis, here we 
evaluated a 2-component oviposition deterrent (2c), shown effec-
tive at reducing SWD oviposition in raspberries in the laboratory 
and field (Roh et al. 2023), as an alternative spatial repellent in a 
SWD push–pull management system. These compounds are less vol-
atile than some of the known SWD repellents tested in the field (eg 
2-pentylfuran; Cha et al. 2021, Shrestha et al. 2024) and previous 
research with the Tephritid Zeugodacus cucurbitae indicates most of 
the efficacy occurs after contact rather than at a distance (Movva et 
al. 2025). Using the 2c as the “push” and the 4-component SWD lure 
(4c; Cha et al. 2014) as the “pull”, we evaluated the effects of push 
(2c), pull (4c), and push–pull (2c + 4c combination) on SWD ovipo-
sition using (i) 2-choice, (ii) no-choice, and (iii) 4-choice assays in 
the laboratory or greenhouse with raspberry agar as an oviposition 
substrate, and (iv) 4-choice test in a raspberry field.

Material and Methods

Insects
The SWD adults used for the laboratory assays were from col-
onies maintained at USDA-ARS, Hilo, Hawaii, USA. The initial 
colony flies were originally reared out from strawberry guava fruit 
(Psidium cattleyanum Sabine) collected near Hilo, Hawaii in 2020 
and, periodically supplemented with wild flies and were reared 
at 22.1 ± 1.9 °C, 71.7 ± 3.1% relative humidity (RH), 12 h:12 h 
(light:dark) on Drosophila medium (Carolina Biological Supply Co., 
Burlington, NC, USA) with brewer’s yeast (ACH Foods, Ankeny, IA, 
USA). Laboratory trials were conducted using 7- to 10-d-old flies.

Chemicals
Octanoic acid (C8:0) and decanoic acid (C10:0) (both ≥98% purity) 
were purchased from Sigma-Aldrich (St. Louis, MO, USA) to formu-
late 2c as described in Roh et al. (2023). C8:0 and C10:0 were mixed at 

a ratio of 6.9:7.3 and diluted in ethanol (Pharmco, HPLC grade, 200 
proof) at 2 mg of 2c mixture/200 µl ethanol, which was effective at 
reducing SWD oviposition in raspberries (Roh et al. 2023). Acetic 
acid (≥99% purity), acetoin (≥95% purity), and methionol (≥98% 
purity) were purchased from Sigma-Aldrich (St. Louis, MO, USA) to 
formulate 4-component SWD lure composed of acetoin, methionol, 
acetic acid, and ethanol (4c-lure; Cha et al. 2014).

Laboratory Bioassays
Two-Choice Bioassay
A series of 2-choice bioassays were conducted in different 
combinations of treatments as follows: (i) control vs. push, (ii) 
control vs. pull, (iii) control vs. push–pull, (iv) push vs. pull, (v) 
push vs. push–pull, and (vi) pull vs. push–pull at USDA-ARS, Hilo, 
Hawaii, using raspberry agar (0.75%) as an oviposition substrate 
(Roh et al. 2023). Choice tests were conducted in screened cages 
(30 × 30 × 30 cm (W × L × H); shop.bugdorm.com) with 30 female 
and 10 male SWD (7 to 10 d old) per cage with each cage pro-
vided with water on a cotton ball in an environmentally controlled 
room (22.1 ± 1.9 °C, 71.7 ± 3.1% RH). In each cage, 2 raspberry 
agar plates treated with 1 of the 6 treatment combinations above 
were placed 17 cm apart from each other (Fig. 1A). Raspberry agar 
plates were Petri dishes (60 × 15 mm) filled with 10 ml of 0.75% 
agar (Sigma-Aldrich) mixed in raspberry juice (50 ml) prepared by 
hand straining fresh, ripe raspberries through a layer of fine mesh 
to separate the juice from the pulp and seeds. Depending on the 
treatments, the agar plates were either surface-treated with 200 µl 
of ethanol (control), with 200 µl of 2c blend (push treatment), 
with 200 µl of ethanol plus a beaker trap baited with 4c-lure (pull 
treatment), or with 200 µl of 2c-blend plus a beaker trap baited 
with 4c-lure (push–pull treatment). Each beaker trap consisted of 
a 100 ml glass beaker covered with aluminum foil with a cut cen-
trifuge vial (0.7 cm diameter) inserted at the center to facilitate the 
entry of the flies and restrict flies from escaping. Each trap was 
baited with the 4c-lure. For 4c, acetoin and methionol was released 
from a 4 ml polypropylene vial with a 3 mm hole in the vial cap, 
loaded with 1 ml of neat 1:1 mixture of acetoin and methionol. 
Acetic acid and ethanol were released from 10 ml of drowning so-
lution with 1.6% acetic acid and 7.2% ethanol with 0.0125% of 
unscented soap (Cha et al. 2014). After 15 h, the number of eggs 
on the raspberry agar surface were gently separated and counted 
under a microscope and the number of flies in beaker traps baited 
with 4c-lure were also counted and sexed. Each experiment was 
replicated 5 times.

No-choice Bioassay
The effect of control, push, pull, and push–pull treatment on SWD 
oviposition in raspberry agar was also evaluated using no-choice 
bioassays. The experimental setup was identical to the 2-choice cage 
bioassay described above, except that only 1 treatment was placed 
inside the cage depending on the treatment tested. The experiment 
was replicated 5 times.

Laboratory Push–Pull Test Using Raspberry Agar
The effect of control, push, pull, and push–pull treatments on SWD 
oviposition in raspberry agar was compared with all 4 treatments 
randomly placed in a larger arena (Fig. 1B; 60 × 60 × 60 cm 
(W × L × H); shop.bugdorm.com). Each treatment was prepared as 
described above. For each arena, 60 female and 30 male SWD of 
7 to 10-d-old flies were tested. The experiment was replicated 4 
times.
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Field Trial
Field experiments were carried out to evaluate the effect of a “push–
pull” strategy on SWD infestation in raspberries, using 6 raspberry 
microplots established at Cornell AgriTech, Geneva, New York. Each 
raspberry plot was separated at least by 0.5 km and considered as a 
replicate in a randomized block design. Briefly, each plot had three 
rows (7 m each) of raspberries with 11 raspberry plants in each row 
with 2.4 m spacing between the rows. The plantings were established 
in 2018 and the field trial was conducted in August 2023 during high 
levels of SWD infestations in the area. Within each plot, each corner 
of the first and third rows were selected for 1 of the 4 treatments 
(see below), leaving the middle row and middle parts of the first and 
third rows as an untreated buffer zone. The 3 to 4 plants at each of 4 
corners in each plot (both ends of first and third rows) were selected 
and randomly assigned to 1 of the 4 treatments: control, push, pull, 

and push–pull. From the selected plants at each corner, 5 fruiting 
canes were selected 1 wk before the trial. After all ripe berries were 
removed from the selected fruiting canes, remaining green berries on 
the canes were enclosed in fine mesh bags (Trimaco, Inc., Morrisville, 
NC, USA), which were sealed around the cane with a twist tie to 
avoid infestation by resident SWD. The mesh bags were removed just 
before the application of treatments on the day of the experiment.

For the “push” treatment, the 2c oviposition deterrent blend was 
mixed in food grade coating “Endura-Fresh 9000” (JBT, Florida, 
USA) at the final concentration of 2 mg of 2c in 200 µl of the coating 
as an experimental sprayable formulation and sprayed on the fruiting 
cane at a rate of approximately 20 ml/cane (ie 200 mg of 2c/cane). For 
the “pull” treatment, 4 commercial SWD traps (Scentry Biologicals, 
Billings, MT, USA) baited with Scentry SWD lures (same compounds 
as 4c used above) were hung near the 3 to 4 selected corner plants (2 

Fig. 1. Diagram of experimental setup for: A) 2-choice bioassay using 30 × 30 × 30 cm (W × L × H) cages, B) 4-choice push–pull bioassay using 60 × 60 × 60 cm 
(W × L × H) cages in the laboratory, and C) experimental setup for the push–pull experiment in the raspberry field. Control: raspberry agar treated with solvent 
(ethanol); Push: raspberry agar treated with the oviposition deterrent; Pull: raspberry agar treated with solvent plus gated trap baited with the 4-component 
spotted-wing drosophila lure (4c-trap); Push–pull: raspberry agar treated with the oviposition deterrent plus the 4c-trap. The figure created with BioRender.com, 
accessed on April 16, 2025. 
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traps hung at 1.3 m height and 2 traps at 0.6 m height on trellis at 
the right and left end of 3 to 4 selected plants zone). For “push–pull” 
treatment, the raspberry fruiting canes were sprayed with the 2c-blend 
formulation as described for the “push” treatment and 4 SWD traps 
deployed around the raspberry plants as described for “pull” treat-
ment. Our preliminary assays with Endura-Fresh 9000 showed no ef-
fect on SWD oviposition in the laboratory when compared to ethanol 
control using raspberry agar (Endura-fresh: 27.4 ± 0.75 eggs/agar; 
control: 25.8 ± 2.53 eggs/agar; F1,4 = 0.24, P = 0.6495). Hence, “con-
trol” and “pull” treatments were not sprayed with the food coating. 
Also, no blank traps were deployed around the plants in “control” 
and “push” treatments. Two days after treatments were applied, pre-
viously bagged ripe raspberries from the experimental canes were 
harvested, transferred to the laboratory, and held in rearing containers 
with 1% water agar media in walk-in growth chamber (25 °C, 55% 
RH, 16:8 L:D) over 6 d until the total number of pupae were counted. 
Also, the total number of male and female adult SWD captured in 
Scentry traps were counted after 2 d of treatment in the field.

The effects of push and/or pull treatments were also tested using 
sentinel raspberry fruits simultaneously during the above-described 
field experiments. Store-bought organic raspberries were placed in 
a deli cup container (473 ml; 5 raspberries/container) filled with 
50 ml of 1% water agar media. One deli container with sentinel 
raspberries was hung at 1.3 m height per treatment, on a bamboo 
stick staked in the middle part of the 3 to 4 selected raspberry plants 
from each corner that were randomly assigned to control, pull, push, 
or push–pull treatment. Small holes (1 cm diameter, 8 to 10 holes) 
were perforated around the deli cup to allow SWD access to sentinel 
raspberries. The sentinel raspberries used in the push or push–pull 
treatments were coated with 200 µl of the 2c-blend formulation, 
consistent with the “push” treatment. Sentinel berries for control 
and pull treatments did not get any coating. Sentinel raspberries 

were collected 1 d after treatments and returned to the laboratory 
and held in rearing containers in walk-in growth chamber (25 °C, 
55% RH, 16:8 L:D) over 6 d for pupation. Number of SWD pupae 
was determined as described above.

Statistical Analysis
Differences in the numbers of eggs, pupae, or flies from various 
treatments in laboratory assays and field experiments were analyzed 
using a generalized linear mixed model in a randomized block de-
sign, using a Poisson distribution with log link function and max-
imum likelihood estimation. Different push–pull treatments were 
considered as a fixed factor, while block (replication) was a random 
factor. Treatment means were compared using Tukey–Kramer test 
(Proc Glimmix, SAS Studio).

Results

Evaluation of Push and Pull in 2-choice Bioassays
In 2-choice bioassays, using oviposition deterrent (2c) as a “push” 
component was effective at reducing SWD oviposition on rasp-
berry agar. Numbers of SWD eggs on raspberry agar were signif-
icantly reduced by the push treatment compared with the control 
(F1,4 = 19.52, P = 0.0115; Fig. 2A). However, using the 4-component 
SWD lure (4c) as a “pull” did not result in reduced SWD oviposition 
compared to control (F1,4 = 0.21, P = 0.6702; Fig. 2B). Further tests 
showed that the combination of push and pull treatment resulted in 
significant reduction in SWD oviposition than control (F1,4 = 21.08, 
P = 0.0101; Fig. 2C). The effect of push–pull treatment appeared to 
be mostly derived by the effect of the push treatment. When the push 
and pull were compared, raspberry agar treated with the push treat-
ment had significantly fewer SWD eggs than raspberry agar treated 
with the pull treatment (F1,4 = 16.87, P = 0.0148, Fig. 2D). There was 

Fig. 2. Comparison of number (mean ± SEM) of Drosophila suzukii eggs oviposited on raspberry agar in laboratory 2-choice tests using 2c as a “push” and 
4-component SWD lure as a “pull”: A) Control vs push, B) control vs pull, C) control vs push–pull, D) push vs pull, E) push vs push–pull and F) pull vs push–pull. 
For each test, different letters on the bars indicate significant differences by Tukey–Kramer tests at P < 0.05, N = 5.
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no significant difference in SWD oviposition between the push and 
push–pull treatments (F1,4 = 0.49, P = 0.5231, Fig. 2E). No signifi-
cant difference in SWD oviposition was observed between the pull 
and push–pull treatments (F1,4 = 1.86, P = 0.2448, Fig. 2F). In the 
above-described tests, the 4c traps in the pull or push–pull treatments 
captured a varying range of released female SWDs (captured 60.0% 
of released female SWD when used as a part of pull treatment, Fig. 
2B; 34.0% in push–pull, Fig. 2C; 14% in pull, Fig. 2D; 29.3% in 
push–pull, Fig. 2E; 9.1% in pull and 5.8% in push–pull, Fig. 2F).

Evaluation of Push and Pull Component in 
No-choice Bioassays
In no-choice bioassays, numbers of SWD oviposition on raspberry 
agars treated with the push or push–pull treatment were significantly 
lower than numbers of eggs oviposited on agars treated with con-
trol or the pull treatment (F3,12 = 28.42, P < 0.0001; Fig. 3). Push and 
push–pull treatments resulted in similar reductions in SWD oviposi-
tion compared to control, with 65.5% and 74.0% oviposition reduc-
tion from the push and push–pull treatment, respectively, despite the 
fact that the 4c traps in push–pull treatment captured 57% and 28% 
of female and male D. suzukii released in the cage. The lack of signif-
icant effect of pull treatment was also observed in the no-choice test. 
There were no significant differences in SWD oviposition between 
control vs. pull treatment, although the 4c traps in the pull treatment 
captured 58.0% and 42.0% of female and male SWD, respectively.

Evaluation of Push and Pull Components in 4-choice 
Laboratory Bioassays
The results from the 4-choice bioassay among control, push, pull, 
and push–pull treatments were similar to the results from the 
no-choice assay. Both the push and push–pull treatments resulted 
in significant, similar level of reduction in SWD oviposition on rasp-
berry agar, while the pull treatment did not result in oviposition re-
duction (F3,9 = 18.93, P = 0.0003, Fig. 4). The 4c traps in pull and 
push–pull treatments captured 26.6% and 43.3% of released SWD 
females, respectively.

Field Evaluation of Push and Pull Components in 
the Raspberry Field
Similar to laboratory results, using the 2c as a “push” component 
of the push–pull strategy was effective at reducing SWD infestation 

in both the natural and sentinel raspberries in the field (natural 
raspberry: F3,15 = 13.54, P = 0.0002, Fig. 5A; sentinel raspberries: 
F3,15 = 9.72, P = 0.0008, Fig. 5B). Numbers of SWD pupae reared 
out from previously bagged, field grown raspberry fruits were 
53.9% and 36.0% lower under the push and push–pull treatments, 
respectively, compared to control. However, there was no signifi-
cant difference between the number of SWD pupae emerged from 
the raspberries treated with the pull treatment and the number of 
pupae from the control raspberries (Fig. 5A). Similar to field grown 
raspberries, both push and push–pull treatments significantly 
reduced SWD infestation in sentinel raspberries. Numbers of SWD 
pupae emerged from sentinel berries were 79.5% and 70.9% lower 
in the push and push–pull treatments, respectively, compared to sen-
tinel fruits from control plots. In terms of number of SWD captured 
in Scentry traps deployed in the pull and push–pull plots, the traps 
in the push–pull plots captured twice the number of SWD (males: 
119.6 ± 25.3 flies/trap; females: 114.0 ± 7.4 flies/trap) than the traps 
in the pull plots (males: 53.8 ± 13.7 flies/trap; females: 57.8 ± 5.8 
flies/trap; SWD males: F1,5 = 142.18, P < 0.0001; SWD females; 
F1,5 = 93.88, P = 0.0002).

Discussion

Our results show that an effective oviposition deterrent has a po-
tential as an alternative push component of a spatial repellent in a 
SWD push–pull system. When the 2-component oviposition deter-
rent (2c; Roh et al. 2023) was applied either on raspberry agar in 
the laboratory or on raspberry fruit in the field, the 2c-based push 
treatment resulted in a significant reduction in SWD oviposition 
or fruit infestation. This is the first demonstration of the effective-
ness of an SWD oviposition deterrent in a push–pull system and 
supports the use of the oviposition deterrent as a potential alter-
native to other SWD repellents, such as 1-octen-3-ol (Wallingford 
et al. 2018) and 2-pentylfuran (Stockton et al. 2021, Shrestha et al. 
2024), that are being evaluated as a push component of SWD push–
pull. One of the advantages of the more contact-based and less vol-
atile oviposition deterrent than more volatile spatial repellents may 
be that it could manifest its effect even after an insect contacts the 
fruit (Roh et al. 2023). For example, the vapor pressures of the 2c 
compounds tested in this study (octanoic acid: 3.71 × 10−3 mm Hg at 
25 °C; decanoic acid: 3.66 × 10−4 mm Hg at 25 °C) are much lower 
than the vapor pressures of some of the known spatial repellents 

Fig. 3. Comparison of number (mean ± SEM) of Drosophila suzukii eggs 
oviposited on raspberry agar in laboratory no-choice test using 2c as a “push”, 
4-component SWD lure as a “pull”, and the combination of 2 as “push–pull”. 
Different letters on the bars indicate significant differences by Tukey–Kramer 
tests at P < 0.05, N = 5.

Fig. 4. Comparison of number (mean ± SEM) of Drosophila suzukii eggs 
oviposited on raspberry agar in laboratory 4-choice tests conducted in a 
greenhouse, using 2c as a “push”, 4-component SWD lure as a “pull”, and 
the combination of 2 as “push–pull”. Different letters on the bars indicate 
significant difference by Tukey–Kramer tests at P < 0.05, N = 4.
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of SWD [eg 1-octen-3-ol: 2.25 mm Hg at 50 °C (Wallingford et al. 
2017); 2-pentylfuran: 2.02 mm Hg at 25 °C (Cha et al. 2021)]. This 
makes an oviposition deterrent a good alternative to a spatial repel-
lent in terms of maintaining effective concentration of antagonistic 
compounds in the field, which has been shown to be logistically chal-
lenging especially for spatial repellents with high volatility (Shrestha 
et al. 2024).

In contrast to the demonstrated efficacy of the oviposition deter-
rent in the field, the pull treatment based on the 4c SWD lure (Cha et 
al. 2012, 2014) did not lead to reductions in SWD oviposition or fruit 
infestation in either laboratory or field studies. The observed reduc-
tion in oviposition from the push-only treatment was comparable to 
that of the push–pull treatment, indicating no additive or synergistic 
effect when combining the push and pull components in this way. 
Although push–pull systems are generally more effective when such 
interactions prevent fruit damage, this was not observed in this study 
or in prior research (Wallingford et al. 2018). This suggests that the 
4c SWD lure, as tested in this study, may not be an optimal choice as 
the pull component in SWD push–pull systems. Furthermore, both 
laboratory and field experiments revealed no consistent relationship 
between the number of female SWD captured and reductions in ovi-
position or fruit damage, further supporting the lack of efficacy of 
the 4c as pull component as tested in this study. The reasons for the 
pull treatment’s inability to reduce SWD damage remain unclear but 
may include: (i) insufficient SWD capture to mitigate fruit damage, 
especially under high SWD pressure observed during the raspberry 
plot experiment (personal observation: GML and DHC), (ii) a po-
tential spillover effect, where SWD attracted but not captured by 
traps contributed to local fruit damage (Hampton et al. 2014), and/

or (iii) ineffective targeting of female SWD that were physiologically 
ready to lay eggs (Wong et al. 2018). Further research is underway 
to elucidate the underlying factors contributing to the observed lack 
of efficacy of 4c as a pull treatment in this study.

Although the 2c has low volatility, evidence indicates that the be-
havioral mode underlying the oviposition reduction may be a com-
bination of contact deterrence and spatial repellency as suggested by 
Roh et al. (2023). The same was also supported in a recent study de-
veloping an oviposition deterrent of melon fly, Z. cucurbitae, which 
identified a mixture of 5 fatty acid compounds, including octanoic 
acid and decanoic acid, as the key oviposition deterrent components 
(Movva et al. 2025). In the study, when given a choice, melon fly 
made 48.5% fewer visits, spent 39% less time, and oviposited 
88.2% fewer eggs per min on the oviposition deterrent treated host 
fruit agar than on control agar, indicating that the oviposition reduc-
tion resulted from both reduced visitation (spatial repellency) and 
reduced oviposition after contact (contact deterrence).

There have been several SWD repellents that showed field efficacy 
in SWD oviposition reduction (Renkema et al. 2016, Wallingford et 
al. 2016, Cha et al. 2021, Gale et al. 2024, Shrestha et al. 2024). This 
study adds an oviposition deterrent such as 2c (Roh et al. 2023), as 
a feasible candidate for a push component in a push–pull manage-
ment system for SWD. Given their relatively low volatility, the ovi-
position deterrent can have longer residence time on the crop after 
application and may provide residual deterrent activity over a longer 
period of time compared to other more volatile repellent compounds 
that require potentially more frequent release in the field (Shrestha et 
al. 2024). Both octanoic and decanoic acids are naturally occurring 
medium-chain fatty acids found in food-grade substances such as 
coconut oil and are classified as generally recognized as safe (GRAS). 
However, we recognize that, although applying an oviposition de-
terrent directly to the crop might be more effective than hanging 
spatial repellents in dispensers, this could result in classifying the 
compounds as a bioinsecticide, which may subject it to additional 
regulations. Future research is required to study the effects of break-
down products of the oviposition deterrent on SWD activity, the ef-
fect of different doses and longevity on their efficacy in the field, 
potential synergistic effect with other known SWD repellents, the 
potential impact on fruit quality and flavor, and optimization of a 
SWD mass-trapping method as a pull component.
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